Search results for "Activated Sludge"

showing 10 items of 143 documents

A plant-wide modelling comparison between membrane bioreactors and conventional activated sludge

2020

Abstract A comprehensive plant-wide mathematical modelling comparison between conventional activated sludge (CAS) and Membrane bioreactor (MBR) systems is presented. The main aim of this study is to highlight the key features of CAS and MBR in order to provide a guide for an effective plant operation. A scenario analysis was performed to investigate the influence on direct and indirect greenhouse gas (GHG) emissions and operating costs of (i) the composition of inflow wastewater (scenario 1), (ii) operating conditions (scenario 2) and (iii) oxygen transfer efficiency (scenario 3). Scenarios show higher indirect GHG emissions for MBR than CAS, which result is related to the higher energy con…

0106 biological sciencesEnvironmental EngineeringBioengineeringWastewater010501 environmental sciencesMembrane bioreactor01 natural sciencesWaste Disposal FluidGreenhouse GasesBioreactors010608 biotechnologyBioreactorWaste WaterScenario analysisWaste Management and Disposal0105 earth and related environmental sciencesWWTPEnergy demandMathematical modellingSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentEnvironmental engineeringMembranes ArtificialGeneral MedicineEnergy consumptionActivated sludgeWastewaterPlant-wide modelGreenhouse gasSimple modelEnvironmental scienceWaste disposal
researchProduct

Combination of the OSA process with thermal treatment at moderate temperature for excess sludge minimization

2019

Abstract This study investigated the chance to couple the conventional Oxic Settling Anaerobic (OSA) process with a thermic treatment at moderate temperature (35 °C). The maximum excess sludge reduction rate (80%) was achieved when the plant was operated under 3 h of hydraulic retention time (HRT). Compared with the conventional OSA system, the thermic treatment enabled a further improvement in excess sludge minimization of 35%. The observed yield coefficient decreased from 0.25 gTSS gCOD−1 to 0.10 gTSS gCOD−1 when the temperature in the anaerobic reactor was increased to 35 °C, despite the lower HRT (3 h vs 6 h). Moreover, the thermic treatment enabled the decrease of filamentous bacteria,…

0106 biological sciencesEnvironmental EngineeringHydraulic retention timeSegmented filamentous bacteriaBiomassBioengineeringThermal treatment010501 environmental sciencesWaste Disposal Fluid01 natural sciencesBioreactorsExtracellular polymeric substanceSettling010608 biotechnologyThermic treatmentAnaerobiosisBiomassWaste Management and Disposal0105 earth and related environmental sciencesOSA proceSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryTemperatureGeneral MedicinePulp and paper industryActivated sludgeActivated sludgeSludge minimizationBiomass kineticAnaerobic exerciseBioresource Technology
researchProduct

Assessment and characterization of the bacterial community structure in advanced activated sludge systems

2019

Abstract The present study is aimed to assess and characterize the structure of bacterial community in advanced activated sludge systems. In particular, activated sludge samples were collected from an Integrated Fixed-film Activated Sludge – Membrane Bioreactor pilot plant under a University of Cape Town configuration with in-series anaerobic (Noair)/anoxic (Anox)/aerobic (Oxy) reactors – and further analyzed. The achieved results – based on Next Generation Sequencing (NGS) of 16S rDNA amplicons – revealed that the bacterial biofilm (bf) communities on plastic carriers of Oxy and Anox reactors had a greater diversity compared to suspended (sp) bacterial flocs of Oxy, Anox and Noair. Indeed,…

0106 biological sciencesEnvironmental EngineeringIFAS-MBRBiomassBioengineeringWastewater treatment010501 environmental sciencesMembrane bioreactor01 natural sciencesBioreactors010608 biotechnologyBiomassRhodobacteraceaeDNA extractionWaste Management and DisposalNGS of 16S rDNA amplicon0105 earth and related environmental sciencesSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientalebiologyRenewable Energy Sustainability and the EnvironmentChemistryMicrobiotaBiofilmGeneral Medicinebiology.organism_classificationPulp and paper industryAnoxic watersActivated sludgeBiofilmsSewage treatment16S rRNA geneBacterial communityBacteriaBioresource Technology
researchProduct

Effect of complexing agents on phosphorus release from chemical-enhanced phosphorus removal sludge during anaerobic fermentation

2020

Phosphorus (P) release from sludge containing phosphate precipitates (FePs or AlPs) as well as the anaerobic performance with the addition of complexing agents (citric, tartaric and EDTA) during ambient anaerobic fermentation process were investigated. Results showed that citrate addition was the most effective method to enhance P release from inorganic phosphate by chelation and promote volatile fatty acids (VFAs) production simultaneously during anaerobic fermentation. Equimolar citrate addition with chemical precipitates was the optimal dosage. Microbial analysis revealed that EDTA has the strongest inhibitory effect on microbial activity and community structure, while citrate was more e…

0106 biological sciencesEnvironmental EngineeringMicroorganismchemistry.chemical_elementBioengineering010501 environmental sciencesTartrate01 natural scienceschemistry.chemical_compound010608 biotechnologyMicrobial communityComplexing agentChelationAnaerobiosisWaste Management and Disposal0105 earth and related environmental sciencesWaste activated sludge (WAS)SewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentPhosphorusPhosphorusGeneral MedicineFatty Acids VolatilePhosphatechemistryMicrobial population biologyFermentationFermentationAnaerobic fermentationCitrateAnaerobic exerciseNuclear chemistryBioresource Technology
researchProduct

Integrated Fixed Film Activated Sludge (IFAS) membrane BioReactor: The influence of the operational parameters

2020

Abstract The present paper investigated an Integrated Fixed Film Activated Sludge (IFAS) Membrane BioReactor (MBR) system monitored for 340 days. In particular, the short-term effects of some operational parameters variation was evaluated. Results showed a decrease of the removal rates under low C/N values. Respirometry results highlighted that activated sludge was more active in the organic carbon removal. Conversely, biofilm has a key role during nitrification. The major fouling mechanism was represented by the cake deposition (irreversible).

0106 biological sciencesMembrane foulingEnvironmental EngineeringBiological nutrient removalBioengineering010501 environmental sciencesMembrane bioreactor01 natural sciencesRespirometryBioreactors010608 biotechnologyDeposition (phase transition)Waste Management and Disposal0105 earth and related environmental sciencesFoulingSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentChemistryMembrane foulingMembranes ArtificialGeneral MedicineRespirometryPulp and paper industryIFASNitrificationActivated sludgeBiofilmsMembrane bioreactorNitrification
researchProduct

Removal of 2-butoxyethanol gaseous emissions by biotrickling filtration packed with polyurethane foam

2016

The removal of 2-butoxyethanol from gaseous emissions was studied using two biotrickling filters (BTF1 and BTF2) packed with polyurethane foam. Two different inoculum sources were used: a pure culture of Pseudomonas sp. BOE200 (BTF1) and activated sludge from a municipal wastewater treatment plant (BTF2). The bioreactors were operated at inlet loads (ILs) of 130 and 195 g m(-3) hour(-1) and at an empty bed residence time (EBRT) of 12.5s. Under an IL of ∼130 g m(-3) hour(-1), BTF1 presented higher elimination capacities (ECs) than BTF2, with average values of 106±7 and 68±8 g m(-3) hour(-1), respectively. However, differences in ECs between BTFs were decreased by reducing the irrigation inte…

0106 biological sciencesPolyurethanesMicrobacteriumBioengineeringChryseobacterium010501 environmental sciences01 natural sciencesBiotecnologiaMicrobiologyBioreactorsAir Pollution010608 biotechnologyMolecular Biology0105 earth and related environmental sciencesAir filterVolatile Organic CompoundsChromatographySewagebiologyPseudomonas putidaChemistryPseudomonasGeneral Medicinebiology.organism_classificationPseudomonas putidaBiodegradation EnvironmentalActivated sludgeAir FiltersWastewaterEthylene GlycolsFiltrationTemperature gradient gel electrophoresisAire ContaminacióBiotechnology
researchProduct

A comprehensive comparison between halophilic granular and flocculent sludge in withstanding short and long-term salinity fluctuations

2018

The effects of salinity fluctuations on the activity of autochthonous halophilic bacteria in aerobic granular sludge (AGS) and flocculent activated sludge (FAS) reactors were investigated. The response of nitrifiers and denitrifiers activity to drastic and moderate salinity shocks in the short-term (ST) and long-term (LT) was examined. The BOD5removal efficiency decreased only in the reactors subjected to the drastic LT salinity increase. Nevertheless, stable performances were achieved 18 days after the shock in the AGS-R1 (90%), whereas after 27 days in the FAS-R1 (82%). The loss in nitritation efficiency was higher in the FAS reactors and was proportional to the shock intensity. Nitritati…

0208 environmental biotechnology02 engineering and technology010501 environmental sciencesSalinity shockFish-canning wastewater01 natural sciencesAnimal scienceShortcut nitrification/denitrificationmedicineHalophilic bacteriaSafety Risk Reliability and QualityAmmonium oxidationWaste Management and Disposal0105 earth and related environmental sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryProcess Chemistry and TechnologyFASHalophile020801 environmental engineeringSalinityActivated sludgeAerobic granular sludgeShock (circulatory)Steady state (chemistry)medicine.symptomShock intensityBiotechnologyJournal of Water Process Engineering
researchProduct

Waste activated sludge dewaterability: comparative evaluation of sludge derived from CAS and MBR systems

2016

Nowadays, sludge dewatering is one of the greatest operational cost to wastewater treatment cycle. Specifically, 1t of fresh sludge to be disposed is composed, on average, by 0.25 - 0.30t of suspended solids, with an average cost for treatment and disposal around 280 - 470 €/t of suspended solids. Despite several technologies have been developed with the focus to reduce also the specific sludge production, still mechanical dewatering represents a crucial step to limit the amount of sludge to be disposed. Many physical–chemical parameters influence the sludge dewaterability: floc structure, particle size, bound water content, surface charge and hydrophobicity, Extracellular Polymeric Substan…

0208 environmental biotechnologyCapillary suction timeOcean Engineering02 engineering and technology010501 environmental sciencesMembrane bioreactor01 natural sciencesMBRBioreactorActivated sludge; Capillary suction time; MBR; Sludge dewaterability; Water Science and Technology; Ocean Engineering; Pollution0105 earth and related environmental sciencesWater Science and TechnologyWaste managementSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleSludge Dewaterability Activated Sludge MBR Capillary Suction Time.DewateringPollution020801 environmental engineeringWaste treatmentActivated sludgeWastewaterActivated sludgeEnvironmental scienceWater treatmentSewage treatmentSludge dewaterability
researchProduct

Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study

2017

Abstract The paper reports the results of an experimental campaign carried out on a University of Cape Town (UCT) integrated fixed-film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant. The pilot plant was analysed in terms of chemical oxygen demand (COD) and nutrients removal, kinetic/stoichiometric parameters, membrane fouling and sludge dewaterability. Moreover, the cultivable bacterial community structure was also analysed. The pilot plant showed excellent COD removal efficiency throughout experiments, with average value higher than 98%, despite the slight variations of the influent wastewater. The achieved nitrification efficiency was close to 98% for most of the experimen…

0301 basic medicineEnvironmental EngineeringNitrogenIFAS-MBR010501 environmental sciencesManagement Monitoring Policy and LawBiologyWastewaterMembrane bioreactor01 natural sciencesWaste Disposal Fluid03 medical and health sciencesBioreactorsMBBRWaste Management and Disposal0105 earth and related environmental sciencesWWTPBiological nutrients removal; Enhanced biological phosphorus removal; IFAS-MBR; MBBR; Membrane bioreactors; WWTP; Environmental EngineeringSewageSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleMembrane foulingChemical oxygen demandEnvironmental engineeringGeneral MedicinePulp and paper industryBiological nutrients removalNitrification030104 developmental biologyActivated sludgeEnhanced biological phosphorus removalPilot plantWastewaterDenitrificationEnhanced biological phosphorus removalMembrane bioreactorNitrification
researchProduct

Effect of a co-substrate supply in a MBR treating shipboard slop: Analysis of hydrocarbon removal, biomass activity and membrane fouling tendency

2018

The paper reports the main results of an experiment carried out on a membrane bioreactor (MBR) plant designed for the treatment of shipboard slops. With a view of a co-treatment process of the slop with other wastewaters, sodium acetate, as external co-substrate, was supplied (high dosage – Period 1, low dosage – Period 2) to evaluate its effects on hydrocarbons removal. The MBR pilot plant enabled approximately 99% of total petroleum hydrocarbon (TPH) removal during the entire experiment, confirming the robustness of the MBR technology for the treatment of slops. The chromatography/mass spectrometry analysis showed that the removal efficiency for each alkane was close to the value observed…

0301 basic medicinechemistry.chemical_classificationEnvironmental EngineeringSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleChemistryMembrane foulingBiomedical EngineeringBioengineeringBiomass kinetics Co-substrate Diesel fuel hydrocarbons Gas chromatography/mass spectrometry MBR010501 environmental sciencesBiodegradationMembrane bioreactorPulp and paper industry01 natural sciences03 medical and health scienceschemistry.chemical_compound030104 developmental biologyActivated sludgeHydrocarbonPilot plantTotal petroleum hydrocarbonSodium acetate0105 earth and related environmental sciencesBiotechnologyBiochemical Engineering Journal
researchProduct